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Development of a computer program for analysis of enzyme
kinetics by progress curve fitting
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Abstract

In order to facilitate the study of enzyme kinetics by progress curve analysis, a convenient Windows 95 program was
developed. For describing a set of progress curves, the user should select an enzymatic mechanism. This is guided by a
menu. Reversible and irreversible reactions up to two substrates and products are supported. The program will automatically
use the corresponding rate equation and fit the parameters of that equation at request by numerical integration of the batch
differential equations. Degradation of reactants, enzyme inactivation and inhibition phenomena can easily be incorporated if
required.

The program was tested for finding a rate equation that would describe a set of nine progress curves that was generated
for a hypothetical enzymatic reaction according to an ordered bi–uni mechanism. The mechanistically correct equation fitted
the progress curves best and gave good estimates for the five parameters involved. If there was Gaussian noise of 2%
standard deviation superimposed on the simulated curves, the correct model still fitted satisfactorily, but it became
impossible to discriminate it from some related incorrect models. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The optimization of an enzymatic process by a
modeling approach requires a rate equation of the
enzymatic reaction including its parameter values.
The rate equation should be valid for the whole
range of concentrations of the substrates, products
and enzyme in a process. In many cases, the rate
equation will contain a significant number of param-
eters, even when only the reactant concentrations are
varied while fixing other potential variables, such as
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Ž .pH, temperature and solvent type as in this paper .
Then, large experimental and computational efforts
are required for a proper prediction of the reaction
rates. The development of enzymatic processes could
be greatly facilitated if the methods for obtaining
enzymatic kinetic models would be simplified.

There are two types of enzymatic kinetic experi-
w x Ž .ments 1 : transient or pre-steady state methods,

which are of special interest if detailed mechanistic
information is required; and steady-state methods,
which are easier, but may lead to less detailed mech-
anistic information. Steady-state reaction rates can be

w xanalyzed in two manners 1 : initial rate analysis,
using the traditional Lineweaver–Burk plots for ex-
ample; and progress curve analysis.
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When one is interested in only a limited subset of
the kinetic properties, e.g. in many mechanistic stud-
ies, initial rate analysis is preferred, because it is
easier. However, if one requires the rate equation
including the parameters for reaction equilibria, en-
zyme inactivation, product inhibition and back-
ground decomposition of substrate and product, then
progress curve analysis becomes attractive. Progress

w xcurve analysis has been reviewed by Duggleby 2 ,
w xand some recent works include Refs. 3–8 . A rela-

tively modest set of progress curves may contain
more information than a large set of initial rates, thus
reducing experimental effort. To extract this poten-
tial information from the progress curves can be a
major problem. First, rate equations that are expected
to describe the experiments with a minimum number
of parameters have to be derived. Usually, non-linear
equations will be involved. Then, these equations
have to be incorporated in computer programs that
are able to simultaneously fit multiple parameters of
multiple equations with multiple variables on multi-
ple curves. Commercial software packages that are
able to carry out most types of fits usually show
severe limitations in this respect.

To facilitate progress curve analysis for non-spe-
cialists, the Windows program Encora is being de-
veloped. It is based on a powerful fitting algorithm

w xthat was described earlier 8 . In this paper, the
background of the present program will be ex-
plained, and a study of the potential of progress
curve analysis using this program will be presented.

2. Selection strategy for mechanism and rate
equations

The approach described here assumes that one
desires to use a rate equation that is based on a

Žplausible enzymatic mechanism. Otherwise, some
kind of polynomial equation may be used to fit the

.progress curves, requiring no special software. The
main advantage of using a rate equation that is based
on the correct mechanism of the enzymatic reaction
is that the equation will have the correct structure.
Predictions outside the range of concentrations that
were used for parameter estimation are not specula-

tive and the physical meaning of the parameters will
be clear.

Several selection steps towards a plausible mecha-
nism, and hence, a rate equation will be formulated
subsequently.

2.1. Stoichiometry

First, the stoichiometry of the enzymatic reaction
has to be determined. Usually, this is trivial, because
the stoichiometry is obvious from the E.C.-classifica-
tion of the enzyme:

Ž .1. Oxidoreductases bi–bi, ter–bi or other
2. Transferases bi–bi
3. Hydrolases bi–bi
4. Lyases bi–uni
5. Isomerases uni–uni

Ž .6. Ligases ter–ter or more complex

An important additional stoichiometry is uni–bi.
Uni–bi reactions occur when lyases are used in the
reverse mode.

By covering kinetic mechanisms in which up to
Ž . Ž .two substrates A and B and two products P and Q

are involved in a single reaction, most biotransforma-
tions can be described. Ligases, which convert more
than two substrates into more than two products, are
hardly ever used for biotransformations. Oxidoreduc-
tases, however, are widely used, and a third substrate
may be involved. Then, apparent kinetic parameters
may be obtained for the two substrates if the concen-
tration of the third substrate is not varied. An analo-
gous situation applies to a reaction with a third
product. Thus, a computer program that allows the
selection of one or two substrates and one or two
products should be adequate in almost all cases.

2.2. Order of reactants

In general, by studying the steady state kinetics,
the details of a mechanism cannot be detected, only

Ž .the order sequence in which the substrates enter
and products leave the active site. Consequently, this
order determines which rate equation will be valid.
For uni–uni reactions, there are no options for the
order. Uni–bi, bi–uni and bi–bi reactions can either
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be ordered or at random, and when they are ordered,
it may matter which substrate or product will be first.
The convention to use is that A is the first and B the
second substrate to enter the enzyme, and P is the
first and Q the second product to leave the enzyme
w x9 . For ordered bi–bi reactions, one additional op-
tion will be considered here: the first product can
leave either before or after the second substrate has

Žentered the active site ping-pong and ternary com-
.plex mechanism, respectively . It seems reasonable

to assume that when the substrates enter at random,
products will also leave at random. Thus, a progress
curve-fitting program should allow for these selec-
tions.

2.3. Rate-limiting step

There are two methods to derive rate equations
from a reaction mechanism as selected according to
the preceding sections, relying on the pseudo-
steady-state assumption and the pseudo equilibrium

w xassumption 10 , respectively.
According to the pseudo-equilibrium assumption,

the associationrdissociation of any Michaelis com-
plex is at equilibrium, and the reaction rate is deter-
mined by the breaking and making of covalent bonds.
For example, for an ordered bi–uni reaction, Eq. 1,
step 3 will be rate-limiting and at steady state, and
steps 1, 2 and 4 will be at equilibrium.

k c k c k k1 A 2 B 3 4

E° EA° EAB°EP ° E 1Ž .
k k k k cy1 y2 y3 y4 P

This leads to relatively simple rate equations, with
three types of parameters: dissociation constants of

Žthe Michaelis complexes of A, B and P indicated
.here by K , K and K , a catalytic constantmA mB mP

Ž f .k that equals the rate constant of the forwardcat

rate-determining step, and the equilibrium constant
Ž .K .eq

k f
cat

c c yc rKŽ .A B P eqK KmA mByr s c 2Ž .A Ec c c cA A B P
1q q q

K K K KmA mA mB mP

Alternatively, the pseudo-steady-state assumption
can be worked out. Then, any step may be a rate-

limiting step, and none is supposed to be at equilib-
Žrium. A step in which an isomerization occurs i.e.

no substrates enter and no products leave the en-
.zyme does not change the structure of a pseudo-

steady-state rate equation. For simplicity, isomeriza-
tion steps should be cancelled from the mechanism.
Thus, for an ordered bi–uni reaction, the EAB and
EP states can be lumped into a EABrEP state:

k c k c k1 A 2 B 3

E° EA° EABrEP° E 3Ž .
k k k cy1 y2 3 P

Despite this reduction in the number of steps, the
rate equations become less simple and contain more
parameters, now also involving some inhibition con-

Ž .stants K ’s . For the preceding mechanism,i

y rA

k f
cat

c c yc rKŽ .A B P eqK KiA mB
s cEc K c c c c c cA mA B A B P B P

1q q q q q
K K K K K K K KiA iA mB iA mB mP iB mP

4Ž .

There may be constraints between the parameters
that reduce the number of independent parameters
w x11 , and in a progress curve-fitting program, these
constraints must be taken into account. Still, there
will usually be less parameters for the pseudo-equi-
librium approach than for the pseudo-steady-state
approach. The results of using either approach for
progress curve fitting will be shown in a later sec-
tion.

For random mechanisms, the pseudo-steady-state
assumption is seldom used because it leads to ex-
tremely complex rate equations, involving numerous
parameters. The constraints between the parameters
have not been derived yet. Presently, a progress
curve-fitting program can only include rate equations
based on the assumption that in random mechanisms,
bond breakingrmaking is rate-limiting. However,
this is not an important limitation, because random
mechanisms seem to occur much less frequently than
ordered mechanisms. The rate equation thus obtained
for a random bi–uni mechanism, differs from the
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Ž . Xordered equation Eq. 2 only by an additional K -mB

term, originating from the alternative pathway.

yrA

k f
cat

c c yc rKŽ .A B P eqK KmA mBs cEc c c c cA A B P B
1q q q q XK K K K KmA mA mB mP mB

5Ž .

2.4. IrreÕersibility

When a reaction is irreversible, at least one of the
microscopic steps involved in the mechanism will be
irreversible. The rate equations may depend on which
step is irreversible. For example, consider a uni–uni
reaction via an EArEP state. When the second step
is irreversible, or when both steps are irreversible,
the normal Michaelis–Menten equation is valid, but
when only the first step is irreversible, this equation
will include a product inhibition term. For each type
of mechanism, each step may be either reversible or
irreversible. These options must all be supported by
a progress curve-fitting program, which leads to a
large expansion of the number of rate equations that
must be incorporated. However, in many cases, the
same equations are valid.

In every case, where the step just before a single
bond makingrbreaking step is irreversible, it was
found that the equation for zero order kinetics in
substrate is obtained. Then there is only one parame-
ter: k f . This parameter equals the kinetic constantcat

Žof the bond-makingrbreaking step k for uni-sub-2
.strate or k for bi-substrate reactions .3

3. Implementation in a computer program

According to the aforementioned model selection
strategy, the models of Table 1 were incorporated in
the progress curve-fitting program Encora 1.2, which

w xis downloadable from the Internet 12 . The total
number of models is 204, but many end up in the
same rate equation, e.g. the equation for the 0th
order reaction. Still, the number of different equa-
tions is about 100.

Additional kinetic phenomena have also been in-
corporated. For substrate inhibition or inhibition by
an exogenous inhibitor, additional denominator
terms, corresponding to competitive or uncompeti-
tive inhibition complexes, can be included in the rate
equation. Note that the pseudo-steady-state assump-
tion leads to equations in which product inhibition is
intrinsically present, e.g. in Eq. 4. Allosteric effects
have not been incorporated.

Chemical background reactions during enzymatic
reactions are not uncommon. Each reactant can be

Table 1
Overview of enzymatic kinetic models incorporated in Encora

Stoichiometry Order Rate-limitation Number of cases with
Ž .different ir reversibility

Uni–uni Ordered Unknown 4
Ž .Ordered Known 8 4 0th order

Uni–bi Ordered Unknown 8
Ž .Ordered Known 16 8 0th order
Ž .Random Known 16 8 0th order

Bi–uni Ordered Unknown 8
Ž .Ordered Known 16 8 0th order
Ž .Random Known 16 8 0th order

Bi–bi Ping-pong Unknown 16
Ping-pong Known 16
Ordered ternary complex Unknown 16

Ž .Ordered ternary complex Known 32 16 0th order
Ž .Random ternary complex Known 32 16 0th order
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Ž .selected to decompose by an irreversible first or
second order rate equation. A special case is that the
decomposition reaction has the same stoichiometry
as the main enzymatic reaction. If the main reaction
is reversible, this decomposition reaction must be
reversible to the same degree because of thermody-
namic restrictions. The program will use the equilib-
rium constant of the enzymatic reaction also for the
chemical reaction.

Enzyme inactivation is important in many cases,
and the number of mechanisms describing it is quite
large. When the degradation can be described by a
complicated function only, it is doubtful if progress
curve analysis is suitable for the determination of the
kinetic parameters of the enzymatic reaction. There-
fore, the possibilities have been restricted to three
types: degradation that is first order in enzyme con-
centration, second order in enzyme concentration,
and first order in enzyme concentration and also in
concentration of one of the reactants.

In some cases, a single enzyme may catalyze
different reactions simultaneously, such as a kineti-
cally controlled synthesis with concomitant unde-
sired hydrolysis of substrate and product that cannot
be prevented. Other examples include asymmetric
syntheses, where the undesired enantiomer is formed
to some extent, and kinetic resolution. Presently,
only a single case of a simultaneous reaction is
incorporated in Encora. This is an asymmetric syn-
thesis by a reversible bi–uni reaction, leading to both
enantiomers of the product. The enantiomeric ratio E
becomes an additional parameter to be fitted in this
case.

Progress curve fitting does not seem suitable for
analyzing the kinetics of a mixture of enzymes. The
enzymes should be studied one at a time.

4. The fitting procedure

4.1. Initiation

When the model has been selected, the fitting
procedure has to be initiated. The program lists the

Ž .parameters of the selected model equation s . The
user has to enter initial values, and has to indicate
which parameters should be optimized. Some param-

Žeters the equilibrium constant, and the decomposi-
.tion and enzyme inactivation constants can best be

determined independently, so that the number of
parameters to be optimized is as low as possible. The
program has not been designed to work properly if
the latter number exceeds six. It would be difficult to
find the correct parameter values in such cases.

The values given as initial estimates of the param-
eters determine, to a large extent, the success of the
fitting procedure. This is because the rate equations
usually are non-linear, leading to local minima in the
parameter space. When the number of parameters is
large, the absolute minimum cannot be found easily.
The chances to find the absolute minimum increase
if the fitting procedure is carried out several times
starting from very different initial estimates. Also,
the step size in the iteration may be decreased or
increased to find maxima in the parameter space that
are otherwise missed. However, there is no known
procedure that guarantees that the absolute minimum
is found. When lack of good initial parameter esti-
mates delays the fitting procedure, one may perform
an initial rate analysis first.

4.2. Data handling

Encora requires a data set that includes the con-
centrations of all compounds involved. From these
concentrations, the Arelative concentration of PB is
calculated. This is the absolute difference between
the actual and initial concentration of P, subse-

Žquently divided by the initial concentration of A in
. Ž .forward reactions or P in reverse reactions . In this

way, the whole range from 0 to 1 can be covered for
each progress curve, even when P is used as a

Ž .product inhibitor or in a reverse reaction is in
excess to Q. Hence, each curve may potentially get
the same weight during fitting without having to use
a different scaling for different curves in a plot of the
curves.

4.3. Iteration

The fitting procedure itself is similar as in Ref.
w x8 . Every progress curve is simulated by numerically
integrating the batch differential equations using a
fourth order Runge–Kutta routine. Constraints are
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Table 2
Initial concentrations used to simulate progress curves

Curve no. c c c cA0 B0 P0 E0
Ž . Ž . Ž . Ž .molrl molrl molrl molrl

1 0.1 0.1 0 0.0001
2 0.05 0.3 0 0.0001
3 0.3 0.05 0 0.0001
4 0.02 1 0 0.00005
5 1 1 0 0.0002
6 0 0 0.02 0.0001
7 0 0 0.1 0.0001
8 0 0 1 0.0001
9 0 2 0.5 0.00002

w xtaken into account 11 . By comparing the relative
concentration of P for the simulated and experimen-

Ž .tal data, a sum of squared residuals SSres is ob-
tained for each progress curve. This is divided by the
number of measurements of that curve, thus obtain-
ing an estimate of the measurement variance. The
total of these values is minimized, new estimates of
the parameter set being generated by the Simplex-like

w xalgorithm of Nelder and Mead 13 . The stop crite-
rion is that SSres does not change anymore or that
the maximum number of iterations is reached.

5. Results and discussion

To demonstrate the potential use of Encora, a
realistic but complicated kinetic problem was studied
as an example. A hypothetical enzymatic bi–uni
reaction according to the mechanism of Eq. 1 was
taken as the starting point. For simplicity, it was
assumed that k s100 molrly1 sy1 and that each1

other rate constant in this mechanism has the value
of ks10 sy1 or 10 molrly1 sy1. Hence, one might

expect that the equations based on the assumption
Žthat the bond breakingrmaking step step 3 in the

.mechanism is rate-limiting, or that B can directly
bind to the free enzyme, could have problems to
describe the progress curves of such a reaction. This
was tested as follows.

Using the eight rates corresponding to the eight
rate constants and using the batch mass balances for
A, B, P, E, EA, EAB and EP, numerical simulations

Ž .of the progress of the formation or breakdown of P
were performed, starting with different initial con-
centrations of the reactants as shown in Table 2.
These simulations were carried out with very small
integration time steps in order to deal with the
steepness of the differential equations.

The simulations were used to generate nine data
files consisting of 50 equidistant data points per
progress curve. Each data point consists of a reaction
time, the corresponding concentrations of A, B and

ŽP, and the enzyme concentration which was as-
.sumed to remain constant .

In real experimental data, noise will be present
which may trouble a parameter fitting procedure. To
obtain a second set of nine curves, Gaussian-distrib-
uted noise was generated and added to the simulated
concentration values of the reactants in such a way
that the standard deviation was 2% of the exact
concentrations.

The data files thus obtained are included in the
w xdownloadable version of Encora 12 . They were

used for parameter estimation with different kinetic
models as explained subsequently. The progress
curves showed that the reaction proceeds to equilib-
rium. In such a case, to reduce the number of
parameters to be fitted, one should try to obtain the
equilibrium constant from independent equilibration
experiments. Assuming this was accomplished, the
value of the equilibrium constant was fixed at K seq

Table 3
SSres-values for different kinetic models, fitted to progress curves with and without noise

Model no. Bi–uni order Rate-limitation SSres without noise SSres with 2% noise
y71 Ordered Unknown 8.79 10 0.00148
y5Ž .2 Ordered incorrectly B first Unknown 6.97 10 0.00124

3 Ordered Step 3 0.00134 0.00175
Ž .4 Ordered incorrectly B first Step 3 0.03580 0.03662

y55 Random order Step 3 1.16 10 0.00275
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Table 4
Theoretical and fitted values of the steady-state parameters of model 1. Only five of the eight parameters were independently fitted, three

w xwere found via constraints 11
f rMethod k k K K K K K Kcat cat mA mB mP iA iB iP
y1 y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .s l mol s molrl molrl molrl molrl molrl molrl

Theoretical 3.33 2.50 0.0333 1.000 0.750 0.100 2.00 0.500
Fit without noise 3.43 2.50 0.0348 1.035 0.749 0.0993 2.00 0.507
Fit with 2% noise 3.12 3.22 0.0253 0.879 0.952 0.105 2.10 0.549
Fit with noise after ts0 3.34 2.73 0.0353 1.030 0.822 0.0975 1.60 0.462

10 for all fits. Fitting typically required a few min-
utes per case.

Table 1 lists only three different models for a
bi–uni reaction, but if the order is not known, there
are additional wrong-order options for the ordered
models, so the total number of models that can be
used for fitting is five. Table 3 shows the sum of
SSres-values that were obtained for fitting to these
five models.

Surprisingly, only model 4, which assumes the
incorrect order and a rate limitation, did not lead to a
good fit of the data. The other fits were visually
good. In the absence of noise, the low SSres-value
for model 1 reflects that this is the best model; it
assumes the correct order and no rate limitation.
However, in the presence of noise, the performance
of models 1, 2, 3 and 5 is in the same range, and
discrimination is not possible. The difficulty to dis-
criminate between the models is caused by the large

Žnumber of parameters that is fitted four for models
.3 and 4; and five for the others . In general, the

difference between the denominators of the model
Ž .equations Eqs. 2, 4 and 5 is small. In the present

case, the numerical values of the constants in the
denominator are such that discrimination is possible
only when very accurate data are available. Perhaps,
model discrimination would also be possible for the
noise-containing data with a much larger amount of
data.

Suppose the correct model is known from inde-
pendent data. Then it is interesting to find out if
progress curve analysis can lead to reliable parame-
ter estimates for this model. The theoretical values of
the steady-state parameters of model 1 were calcu-
lated by deriving the rate equation for the mecha-

w xnism of Eq. 1 and entering the rate constants 14 . In

Table 4, these theoretical values are compared to the
fitted values.

For the fits to the progress curves without noise,
the parameter values were found back with devia-
tions in the range of only 0–4%, which shows that
the calculational procedures were carried out cor-
rectly. The highest errors are in k f and K . Thesecat mA

parameters are clearly correlated, suggesting that
additional curves at low concentrations of A could
improve the fits. For the fits to the progress curves
with 2% noise, the deviation was 5–25%, which will
be satisfactory in many cases. In an additional series
of fits, the noise was removed from the data point at
ts0, while maintaining it in the other 49 data points
of each curve. This led to a reduction of the devia-
tions to 1–10%, except for the value of K , whichiB

still deviated by 20%. Clearly, the accuracy of the
initial values determines the overall accuracy to a

w xlarge extent, confirming the previous analyses 2 .
Upon removal of the noise from the initial values,

the model discrimination procedure was still not
satisfactory using the present data.

6. Conclusions

w xThe computer program Encora 12 can be used
for parameter estimation of enzymatic reactions us-
ing progress curve analysis. Forward and reverse
reaction curves can be fitted simultaneously, and
degradation reactions, enzyme inactivation and inhi-
bition phenomena can be included in the models
without having to study the kinetic equations in-
volved.
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A study of a hypothetical bi–uni reaction showed
that good parameter estimates can be obtained by
progress curve analysis with measurements that con-

Ž .tain except for the initial concentrations 2% noise.
Model discrimination, however, requires a much
higher accuracy.
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